EECE 320 HOMEWORK 3
Problem 1
· Table 5-38
library ieee;
use ieee.std_logic_1164.all;

entity prime is
 port (N: in std_logic_vector (3 downto 0);
 F: out std_logic);
end prime;

architecture prime3_arch of prime is
signal N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;
begin
 N3L_N0 <= '1' when N(3)='0' and N(0)='1' else '0';
 N3L_N2L_N1 <= '1' when N(3)='0' and N(2)='0' and N(1)='1' else '0';
 N2L_N1_N0 <= '1' when N(2)='0' and N(1)='1' and N(0)='1' else '0';
 N2_N1L_N0 <= '1' when N(2)='1' and N(1)='0' and N(0)='1' else '0';
 F<= N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0;
end prime3_arch;

· Table 5-40
library ieee;
use ieee.std_logic_1164.all;

entity prime is
 port (N: in st_logic_vector (3 downto 0);
 F: out std_logic);
end prime;
architecture prime4_arch of prime is
begin
 with N select
 F <= '1' when "0001",
 '1' when "0010",
 '1' when "0011" | "0101" | "0111",
 '1' when "1011" | "1101",
 '0' when others;
end prime4_arch;
· Table 5-45 (function from table 5-25)
library ieee;
use ieee.std_logic_1164.all;

entity prime is
 port (N: in std_logic_vector (3 downto 0);
 F: out std_logic);
end prime;

architecture prime7_arch of prime is

function CONV_INTEGER (X: STD_LOGIC_VECTOR) return INTEGER is
 variable RESULT: INTEGER;
 begin
 RESULT := 0;
 for i in X'range loop
 RESULT := RESULT*2;
 case X(i) is
 when '0' | 'L' => null;
 when '1' | 'H' => RESULT := RESULT+1;
 when others => null;
 end case;
 end loop;
 return RESULT;
end CONV_INTEGER;

begin
 process(N)
 variable NI: INTEGER;
 begin
 NI := CONV_INTEGER(N);
 if NI=1 or NI=2 then F <= '1';
 elsif NI=3 or NI=5 or NI=7 or NI=11 or NI=13 then F <= '1';
 else F <= '0';
 end if;
 end process;
end prime7_arch;

· Test Bench for the three tables:
library ieee;
use ieee.std_logic_1164.all;

entity prime_tb is
end prime_tb;

architecture arch_tb of prime_tb is
 component prime port (N: in std_logic_vector (3 downto 0);
 F: out std_logic);
 end component;
signal N: std_logic_vector (3 downto 0) := "0000";
signal F: std_logic;
begin
 test: prime port map(N=>N, F=>F);
 process
 begin
 N<="0000"; wait for 10 ns;
 N<="0001"; wait for 10 ns;
 N<="0010"; wait for 10 ns;
 N<="0011"; wait for 10 ns;
 N<="0100"; wait for 10 ns;
 N<="0101"; wait for 10 ns;
 N<="0110"; wait for 10 ns;
 N<="0111"; wait for 10 ns;
 N<="1000"; wait for 10 ns;
 N<="1001"; wait for 10 ns;
 N<="1010"; wait for 10 ns;
 N<="1011"; wait for 10 ns;
 N<="1100"; wait for 10 ns;
 N<="1101"; wait for 10 ns;
 N<="1110"; wait for 10 ns;
 N<="1111";
 wait;

 end process;
end arch_tb;

· Waveform for the three codes:
The testing simulation waveform is the same for all three codes, the wave in yellow is the output that detects prime numbers (=1 when X=1, 2, 3, 5, 7, 11, and 13):

Problem 2
· Circuit and expression:
The 2-bit comparator minimal sum-of-products circuit that produces a 1 output if P < Q is:
 (
Q
0
P
0
P
1
Q
1
)
And its logic expression is: F = P1'.Q1 + P0'.Q1.Q0 + P1'. P0'.Q0

· Entity and data flow architecture:

The VHDL entity and data flow architecture that describes the circuit in terms of gates are:

library ieee;
use ieee.std_logic_1164.all;

entity compare is
 port(P: in std_logic_vector(1 downto 0);
 Q: in std_logic_vector(1 downto 0);
 F: out std_logic);
end compare;

architecture compare_arch of compare is
 signal s1,s2,s3:std_logic;
begin
 s1<= ((not P(1)) and Q(1)) ;
 s2<= ((not P(0)) and Q(1) and Q(0));
 s3<= ((not P(1)) and (not P(0)) and Q(0));
 F<= s1 or s2 or s3;
end compare_arch;
· Test Bench:
library ieee;
use ieee.std_logic_1164.all;

entity compare_tb is
end compare_tb;

architecture arch_tb of compare_tb is

component compare port (P,Q: in std_logic_vector (1 downto 0);
 				F: out std_logic);
end component;

signal P,Q: std_logic_vector (1 downto 0);
signal F: std_logic;

begin
testBench : compare port map (P=>P, Q=>Q, F=>F);
process
begin

P<="00"; Q<="00"; wait for 10 ns;
Q<="01"; wait for 10 ns;
Q<="10"; wait for 10 ns;
Q<="11"; wait for 10 ns;

P<="01"; Q<="00"; wait for 10 ns;
Q<="01"; wait for 10 ns;
Q<="10"; wait for 10 ns;
Q<="11"; wait for 10 ns;

P<="10"; Q<="00"; wait for 10 ns;
Q<="01"; wait for 10 ns;
Q<="10"; wait for 10 ns;
Q<="11"; wait for 10 ns;

P<="11"; Q<="00"; wait for 10 ns;
Q<="01"; wait for 10 ns;
Q<="10"; wait for 10 ns;
Q<="11"; wait for 10 ns;

end process;
end arch_tb;

· VHDL entity and behavioral architecture:

library ieee;
use ieee.std_logic_1164.all;

entity compare is
 port (P,Q: in std_logic_vector (1 downto 0);
 F: out std_logic);
end compare;

architecture behav_arch of compare is
 signal s1,s2,s3,s4: std_logic;
 begin
 process (P,Q)
 begin

 if ((P="00" and Q= "01") or (P="00" and Q(1)='1')
 or (P="01" and Q(1)= '1') or (P="10" and Q="11")) then F<='1';

 else F<= '0';

 end if;
 end process;
end behav_arch;

The test bench is the same as for the dataflow architecture.

· Simulation waveform:
The testing simulation waveform is the same for both architectures, the output is equal to 1 when P < Q:

Problem 3
· VHDL entity and architecture:
library ieee;
use ieee.std_logic_1164.all;

entity multiple is
 port (N: in std_logic_vector (5 downto 0);
 M3: out std_logic;
 M5: out std_logic);
end multiple;

architecture multiple_arch of multiple is

function CONV_INTEGER (X: STD_LOGIC_VECTOR) return INTEGER is
 variable RESULT: INTEGER;
 begin
 RESULT := 0;
 for i in X'range loop
 RESULT := RESULT*2;
 case X(i) is
 when '0' | 'L' => null;
 when '1' | 'H' => RESULT := RESULT+1;
 when others => null;
 end case;
 end loop;
 return RESULT;
end CONV_INTEGER;

begin
 process(N)
 variable temp: integer;
 begin
 temp := CONV_INTEGER(N);
 if (temp rem 3)=0 then M3<='1';
 else M3 <= '0';
 end if;
 if (temp rem 5)=0 then M5<='1';
 else M5 <= '0';
 end if;
 end process;
end multiple_arch;

· Test Bench:
use ieee.std_logic_1164.all;

entity multiple_tb is
end multiple_tb;

architecture multiple_tb_arch of multiple_tb is

component multiple port (N: in std_logic_vector (5 downto 0);
 M3: out std_logic;
 M5: out std_logic);
end component;

signal N: std_logic_vector (5 downto 0);
signal M3,M5: std_logic;

begin
test: multiple port map (N,M3,M5);
 process
 begin
 N<="000110"; wait for 10 ns; -- N=6
 N<="001001"; wait for 10 ns; -- N=9
 N<="001111"; wait for 10 ns; -- N=15
 N<="010100"; wait for 10 ns; -- N=20
 N<="010111"; wait for 10 ns; -- N=23
 N<="101100"; wait for 10 ns; -- N=44
 end process;
 end multiple_tb_arch;

· Simulation waveform:

The wave on top indicates whether the integer is a multiple of 3, and the one on the bottom indicates whether it’s a multiple of 5.
Page 9 of 9

image3.png
i3

i

image4.png
5

¢}

image1.png
oL

T

Fits

(00

oL

070 BT

oL

70)0t

image2.emf

